Dijkstra算法
概述
本章讲解Dijkstra算法
普通版Dijkstra
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。
原理
通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。
此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。
初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是"起点s到该顶点的路径"。然后,从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 然后,再从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 ... 重复该操作,直到遍历完所有顶点。
操作步骤
- 初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为"起点s到该顶点的距离"[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。
- 从U中选出"距离最短的顶点k",并将顶点k加入到S中;同时,从U中移除顶点k。
- 更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。
- 重复步骤(2)和(3),直到遍历完所有顶点。
经典问题
Dijkstra求最短路 I
题目描述
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为正值。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。
输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 −1。
数据范围
\(1≤n≤500,\)
\(1≤m≤10^5,\)
图中涉及边长均不超过10000。
输入样例
1 2 3 4 |
|
输出样例
1 |
|
代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
|
堆优化版Dijkstra
原理
没有优化的迪杰斯特拉算法的时间复杂度为\(O(n^2)\)。
普通版的迪杰斯特拉算法主要缺陷是:每当找到一个最短路径,如果需要找下一个最短路径,就需要在完成松弛操作之后,遍历dist数组,寻找其中的最小值。遍历dist数组的时间复杂度为\(O(n)\)。
如果图的边数为n*(n-1),那么每找到一个最小值,所要进行的松弛操作数就是n-1,这和遍历dist数组可以同时进行,算法优化的空间不大。
然而,如果是稀疏图,每找到一个最小值,所要进行的松弛操作数就远小于n-1,这时就可以对算法进行优化。优化的关键是省去对dist的线性查找,如果每次可以直接返回dist中的最大值,就可以大大减小算法的时间复杂度。
堆优化后的迪杰斯特拉算法复杂度为\(O(ElogE)\)
经典问题
Dijkstra求最短路 II
题目描述
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为非负值。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。
输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 −1。
数据范围
\(1≤n,m≤1.5×10^5,\)
图中涉及边长均不小于 0,且不超过 10000。
数据保证:如果最短路存在,则最短路的长度不超过 \(10^9\)。
输入样例
1 2 3 4 |
|
输出样例
1 |
|
代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
|