
Struct Multidisc Optim (2016) 53:881–892
DOI 10.1007/s00158-015-1359-0

RESEARCH PAPER

On the formulation and implementation of geometric
and manufacturing constraints in node–based shape
optimization

Oliver Schmitt1 · Jan Friederich1 · Stefan Riehl1 · Paul Steinmann1

Received: 1 September 2015 / Revised: 15 October 2015 / Accepted: 22 October 2015 / Published online: 23 November 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract We introduce a novel method to handle geomet-
rical and manufacturing constraints in parameter–free shape
optimization. Therefore the design node coordinates are
split in two sets where one set is declared as new design vari-
ables and the other set is coupled to the new design variables
such that the geometrical constraint is fulfilled. Thereby
no additional equations are appended to the optimization
problem. In contrast the implementation of a demolding
constraint is presented by formulating inequality constraints
which indeed have to be attached to the optimization prob-
lem. In the context of a sensitivity–based shape optimization
approach all manufacturing constraints have to be formu-
lated in terms of the finite element node coordinates such
that first order gradients with respect to the design node
coordinates can be derived.

Keywords Shape optimization · Manufacturing
constraints · Geometrical constraints · Symmetry ·
Parameter–free · Sensitivity analysis

1 Introduction

Recent developments within structural shape and topol-
ogy optimization allow for the efficient improvement of
mechanical parts with respect to a large variety of objec-
tive functions and constraints. However, in many cases the
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optimized shapes do not fulfill specific requirements for
industrial manufacturing. If at all possible, the modification
of the production process would result in high extra costs
for the development and fabrication of new machines. For
economical reasons manufacturers so instead post–process
the optimized shape in order to satisfy the prerequisites for
their existing tools. However, these modifications of the part
might be sophisticated and are typically done without con-
sideration of the objective function, which leads to a loss
of the quality of the part and takes it outside the set of
admissible designs. Therefore it is necessary to incorpo-
rate manufacturing constraints into the optimization process
in order to obtain the optimized, and at the same time,
producible shape.

Several investigations have been accomplished to con-
sider geometrical manufacturing constraints in structural
optimization. A common example is a demolding constraint
for casted parts: the optimized shape must not contain
indentations such that the part can not be pulled out of the
casting mold after the liquid material has solidified (Ahn
et al. 1997). The computer program TopShape (Harzheim
and Graf 2002, 2005a) considers a demolding constraint
for topology optimization problems (Harzheim and Graf
2005b). Allaire et al. (2013) use the signed–distance func-
tion and Xia et al. (2009) modify the design velocity vector
to formulate a casting constraint, both using the level–set
method. Further constraints regarding fabrication are a lim-
itation of the minimal thickness (Allaire et al. 2014; Guest
2008; Sigmund 2009) to ensure a certain stability of the
part. A curvature constraint (Hsu et al. 1995; Wu 2007;
Schmitt and Steinmann 2015) for a minimum radius is of
interest for features fabricated or reworked by a milling
process.

Furthermore, various kinds of symmetrics have to be
imposed as geometrical constraints in areas where the

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s00158-015-1359-0-x&domain=pdf
mailto:oliver.schmitt@ltm.uni-erlangen.de


882 O. Schmitt et al.

geometric model can not be reduced, for instance with
non–symmetric boundary conditions and loadings or non–
symmetric meshes in the context of node–based methods.
In the presented manuscript, we extend the idea sketched
in Schmitt et al. (2014) and show numerical results from
industrial applications.

In the next chapter we establish the boundary value
problem and the optimization problem as preliminaries.
After this we introduce a novel approach to handle geo-
metrical manufacturing constraints for node–based shape
optimization and apply it to the common symmetry types.
Furthermore we formulate equations for a molding con-
straint. Finally, we evaluate the formulation of the man-
ufacturing constraints and their influence on the opti-
mal design trials arrived at by use of several numerical
examples.

2 Preliminaries

This chapter is split in two parts. First the domain consid-
ered for shape optimization is introduced from the mechani-
cal perspective and the boundary value problem is described
(Hughes 1987). In the second part the optimization prob-
lem is presented which we use to incorporate the desired
manufacturing constraints.

2.1 Mechanical problem

We consider a continuum body B ⊂ R
3, with material

points x ∈ B, in the three dimensional Euclidean space
(Fig. 1). The boundary of the body ∂B is split into the Neu-
mann boundary ∂BN and the Dirichlet boundary ∂BD such
that ∂BN ∪∂BD = ∂B and ∂BN ∩∂BD = ∅. On the Dirich-
let part ∂BD, the displacements ū are prescribed, whereas
on the Neumann part ∂BN the body is loaded by external

Fig. 1 A continuum body with Dirichlet and Neumann boundary and
corresponding boundary conditions

tractions t̄ . We consider the case of linear elasticity at small
strains where the equilibrium equations take the format

(S)

⎧
⎨

⎩

∇ · σ = b in B
σ · n = t̄ on ∂BN

u = ū on ∂BD,

(1)

with the Cauchy–stress tensor σ , the outward unit normal
n onto ∂BN and the body forces b. The symmetric strain
tensor ε is defined as

ε = 1

2

[
∇u + [∇u]T

]
,

and the Cauchy stress tensor σ can be related to the strain as

σ = E : ε.

The material of B is considered to be isotropic and homoge-
neous. Hence the elasticity tensor reads

E = λI ⊗ I + 2μI, (2)

where I and I are the second and fourth–order unit tensors
and λ and μ are the Lamé parameters defined as

λ = νE

[1 + ν][1 − 2ν] , μ = E

2[1 + ν] ,
with Young’s modulus E and Poisson’s ratio ν. Equation (1)
is called the strong form (S) of the boundary value prob-
lem. From (S), the weak form (W) of the boundary value
problem is derived (Hughes 1987), for simplicity assuming
a prescribed zero–displacement (ū = 0) and neglecting the
body forces (b = 0):

(W)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find
u ∈ H1

∂BD
(B) = {

u ∈ H1(B) | u = 0 on ∂BD
)

such that∫

B ∇v · σdv = ∫

∂BN
v · t̄da

∀ v ∈ H1
∂BD

(B) = {
v ∈ H1(B) | v = 0 on ∂BD

)

After discretization of the domain into ne finite elements

B ≈ Bh =
ne∑

e=1

Be, (3)

the geometry and the displacement are both approximated
on each element according to the isoparametric concept
such that

x ≈ xh =
nen∑

i=1

xiNi and u ≈ uh =
nen∑

i=1

uiNi, (4)

where xi and ui denote the corresponding nodal values,
which are subsumed in global vectors x and u, Ni are the
shape functions on the reference element, and nen is the
number of nodes per elements. When incorporating (3) and
(4) into the weak form (W) of (1), the problem reduces to
solving a linear system

Ku = f, (5)
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with the stiffness matrix K, the unknown global solution
vector u, and the right hand side, i.e. the global force vector
f. Equation (5) can also be formulated as

0 = r = rint − rext = Ku − f, (6)

where r, rint and rext are the residuum, and the internal and
external global force vectors, respectively.

2.2 Optimization problem

In view of the shape optimization problem we consider
shape changes of ∂B given through design updates after
each iteration. These shape changes underly boundary con-
ditions for the optimization problem. In the context of
node–based shape optimization, the FE–node coordinates
act as design variables. For a maximum design freedom all
boundary node coordinates, which do not have to stay fixed
are defined as design variables. We declare three different
types of nodal coordinates:

1. design node coordinates xd :
Node coordinates which may be displaced by the design
update.

2. controlled node coordinates xc:
Node coordinates which are not updated by the design
update but may be displaced in a controlled manner in
order to avoid distorted elements.

3. fixed node coordinates xf :
Node coordinates which are completely fixed during the
optimization procedure.

In the optimization problem we consider an objective func-
tion f to be minimized with respect to a set of inequality
constraints gi, i = 1, . . . , nieq :

min f (u(xd), xd)

subject to gi(u(xd), xd) ≤ 0, i = 1, . . . , nieq

and Ku = f.

The objective function and all constraint functions have to
be formulated in terms of the FE–node coordinates (more
precisely the design node coordinates), where the inequality
constraints are defined as:

gi = gcurrent
i − gmax

i ≤ 0, i = 1, . . . , nieq

with the respective function evaluated using the design of
the current iteration gcurrent

i and a user specified value
gmax

i .
A scalar quantity which is often used as objective or

constraint function in shape optimization problems is the
von–Mises stress, which is computed using the entries of the
Cauchy stress tensor:

σvM(x) :=
[

−1

2
tr(σ )2 + 3

2
tr(σ · σ )

] 1
2

(7)

Moreover, we introduce the compliance C as the work of
the external forces defined as

C :=
∫

∂BN

u · t̄ dA = u · f, (8)

and the volume V of Bh which is given by

V :=
∫

Bh

1 dV =
ne∑

e=1

∫

Be

1 dV. (9)

2.2.1 Mesh movement and shape regularization

In a node–based shape optimization method the iterative
design update �xd returned by the optimization algorithm
is directly used to modify the nodal coordinates of all design
nodes xd . In order to avoid highly irregular elements close
to the boundary in areas of large shape changes a mesh
update has to be taken into account after each design update.
Here, this update results from an auxiliary boundary value
problem with the design update as prescribed displacements
(Yao and Choi 1989):

∇ · σ̃ = 0 in B
ũ = ud on ∂̃BD, (10)

where ud describes the shape change resulting of the design
update �xd . The material used for the auxiliary boundary
value problem is also considered to be homogeneous and
isotropic, but the (linear) elastic behavior is chosen to be
very soft (i.e. E = 2.25 MPa, ν = 0.125). Thus the actual
update �x consists of the design update �xd in the present
case computed by SNOPT and the mesh update ũ, which
results from (10):

�x = �xd + ũ

Although the node–based method is one of the most popu-
lar approaches in the field of structural shape optimization
it suffers from known drawbacks such as jagged design
boundaries especially in areas of large shape changes. To
gain control of that issue a shape regularization technique
based on Scherer et al. (2009) is applied. In this approach the
actual objective function is penalized by a fictitious strain
energy I,

J = f + αI,

where α ∈ R
+
0 is a parameter controlling the influence of

the regularization. Using the same auxiliary boundary value
problem as for the mesh movement (10), the fictitious strain
energy is given by the quadratic energy function

I := 1

2

∫

Bh

ε̃ : Ẽ : ε̃ dv,

with

ε̃ = ∇symũ,
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and Ẽ according to (2) and the material parameters of
the auxiliary problem. Then the optimization problem with
penalized objective function reads:

min J (u(xd), xd , α) = f (u(xd), xd) + αI∗ (
x∗
c (xd), xd

)

s. t. gi (u(xd), xd) ≤ 0, i = 1, . . . , nieq

and Ku = f

The penalizing strain energy I can be understood as a mea-
sure of shape change resulting from the design update. As a
consequence, for large values of α the relative weight of the
actual objective f decreases and the regularized objective J
increasingly gets influenced by the fictitious strain energy
I. However, if α is chosen too large, the decrease of f might
be dominated by the increase of the penalization αI, there-
fore obstructing effective shape changes. On the other hand,
for α too small the influence of the fictitious strain energy
vanishes, resulting in unregularized shapes.

In order to propose a reasonable choice of the control
parameter α in our numerical applications, we will normal-
ize the actual objective w.r.t. its initial value f 0 by setting
f → f/f 0 and rescale the fictitious energy by I → I/V 0,
where V 0 is the volume of the initial geometry. Then, val-
ues α ∈ [1.0, 5.0] turn out to be good choices for effective
but regular shape changes in our experience. In addition,
one could restart the optimization with the optimized shape
as initial geometry in order to allow for even greater shape
changes. For a more detailed discussion the reader referred
to Scherer et al. (2009).

2.2.2 Sensitivity analysis

As a prerequisite for the solution of the optimization prob-
lem, the gradients of all objective and constraint functions
with respect to the design variables have to be derived.
Therefore, for each implicit dependency the chain rule of
differentiation has to be applied, cf. Scherer et al. (2009).
The functions (7), (8) and (9) generally depend on the dis-
placements, the controlled node coordinates and the design
node coordinates.

Due to the dependencies u(xd, xc(xd)) in the mechanical
problem with xc(xd) due to the auxiliary problem, they can
be computed solely in terms of the design node coordinates.
Thus the sensitivity analysis can be split in two steps:

chain rule step: u(x)

∂f ∗(x)
∂x

= ∂f ∗(u∗(x), x)
∂x

= ∂f (u∗(x), x)
∂u

∂u
∂x

+ ∂f (u∗(x), x)
∂x

From the mechanical problem (6)

0 = ∂r∗(x)
∂x

= ∂r∗(u∗(x), x)
∂x

= ∂r∗,int

∂x
+ ∂r∗,ext

∂x

= ∂rint

∂u
∂u
∂x

+ ∂rint

∂x
+ ∂rext

∂x

= K
∂u
∂x

+ ∂r
∂x

,

it follows that
∂f ∗

∂x
= −∂f

∂u
K−1 ∂r

∂x
+ ∂f

∂x
. (11)

Introducing the adjoint solution λ∗ by

KT λ∗ = −∂f

∂u
,

(11) can be reformulated as

∂f ∗

∂x
= λ∗ ∂r

∂x
+ ∂f

∂x
.

chain rule step: xc(xd)

∂f ∗∗(xd)

∂xd

= ∂f ∗∗(xc(xd), xd)

∂xd

= ∂f ∗(xc(xd), xd)

∂xc

∂xc

∂xd

+ ∂f ∗(xc(xd), xd)

∂xd

From the auxiliary problem

0 = ∂R∗(xd)

∂xd

= ∂R∗(xc(xd), xd))

∂xd

= ∂R
∂xc

∂xc

∂xd

+ ∂R
∂xd

⇒ ∂xc

∂xd

= −
[

∂R
∂xc

]−1
∂R
∂xd

,

it follows that

∂f ∗∗

∂xd

= −∂f ∗

∂xc

[
∂R
∂xc

]−1
∂R
∂xd

+ ∂f ∗

∂xd

. (12)

Introducing the adjoint solution λ∗∗ by
[

∂R
∂xc

]T

λ∗∗ = −∂f ∗

∂xc

,

(12) can be formulated as

∂f ∗∗

∂xd

= λ∗∗ ∂R
∂xd

+ ∂f ∗

∂xd

. (13)

For the sensitivity of the fictitious energy term we get

∂I∗(x∗
c (xd), xd)

∂xd

= ∂I
∂xc

∂x∗
c

∂xd

+ ∂I
∂xd

= ∂I
∂xd

,

where ∂I
∂xc

= 0, since the auxiliary problem is solved by
minimizing the fictitious energy

x∗
c (xd) = argmin

xc

I(xc, xd).
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Summarizing, the gradient of the objective function thus
reads

∂J
∂xd

= ∂f ∗∗

∂xd

+ α
∂I
∂xd

.

2.2.3 SNOPT

For the numerical examples in this contribution the design
update is computed using the gradient–based general pur-
pose optimizer Sparse Nonlinear OPTimizer (SNOPT) (Gill
et al. 2005) which is known for its robust handling of highly
constrained, large–scale, nonlinear optimization problems.
The algorithm has to be provided with the objective and
the constraints evaluated at the current design state as well
as their gradients with respect to the design variables. We
incorporated SNOPT into an in–house Finite–Element pro-
gram in Python using the open source package pyOpt (Perez
et al. 2011).

3 Manufacturing constraints

We present constraints which have the purpose of ensur-
ing that the optimized shape can still be produced using a
specific manufacturing process. We classify two different
approaches (Schmitt et al. 2014): In the first approach, we
formulate the constraints by defining two disjoint subsets of
the design nodes

{xd} −→ {xopt
d , xdep

d }
and a mapping

xdep
d = F(xopt

d ), (14)

that relates one subset to the other. In the following we
call the two subsets optimization nodes xopt

d and dependent

nodes xdep
d and F is denoted as implicit constraint func-

tion. The optimization node coordinates from now on serve
as design variables and the mapping determines the design
update for the dependent node coordinates. This yields an
equivalent optimization problem with a reduced number of
design variables and no additional constraints. However,
through an additional chain rule step the sensitivity informa-
tion of the dependent nodes is considered during the sensi-
tivity analysis and therefore contributes to the computation
of the design update. Hence, the selection of the optimiza-
tion nodes does not influence the final design as long as
it meets the desired geometric constraint. This approach is
only applicable for certain types of geometrical constraints
but implicates two advantages, namely a reduction of the
number of design variables and no additional constraints to
be appended to the optimization problem. By contrast, in

a second approach we derive equality and inequality con-
straints in terms of the design variables, so–called explicit
constraints, and append them to the optimization problem.

3.1 Implicit constraints

Due to the advantages mentioned above, we always aim in
implementing manufacturing constraints using the implicit
approach. In order to ensure the functionality of a part,
several types of symmetrics, such as the herein presented
reflection, rotational and cyclic symmetry may be of inter-
est. In the proposed approaches we restrict ourselves to
employ tetrahedron elements.

3.1.1 Reflection symmetry

An object is reflection symmetric if there is a plane going
through the object dividing it into two pieces which are mir-
ror images of each other. Therefore we define a symmetry
plane S which splits the design nodes into two sets accord-
ing to their position regarding S (see Fig. 2). Thereby it is
not important which of the two sets is chosen as optimiza-
tion nodes as the sensitivities of both enter the sensitivity
analysis eventually. To couple the two sets we compute the
intersection yj of a line through the dependent node x

dep
j

and perpendicular to the symmetry plane S with the surface
of the body on the other side of S (see Fig. 2). The intersec-
tion yj can be expressed in terms of the adjacent FE–nodes
of the intersected surface element using barycentric coordi-
nates. We declare surface elements as those facets of finite
elements at the boundary which intersect with the bound-
ary of our body B. Thus the function for the update of the
dependent nodes reads

x
dep
j = yj − 2d

(
S, yj

)
nS

=
3∑

k=1

λkx
opt
ik

− 2

[[
3∑

k=1

λkx
opt
ik

− pS

]

· nS

]

nS .

where λk are the barycentric coordinates, d(S, yj ) is the dis-
tance between the intersection yj and the symmetry plane
S, pS is an arbitrary, fixed point on S and nS is the unit
normal to S towards the optimization nodes’ side.

Fig. 2 Symmetry plane with optimization nodes and dependent nodes
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Fig. 3 Conflicts are solved by moving intersected surface element
edges on the symmetry plane

Surface elements which are cut by the symmetry plane
may lead to conflicts when it comes to the computation of
the Jacobian matrix of the implicit constraint function F ,
since the intersection yj would be defined by both optimiza-
tion and dependent nodes. In this case, we move vertices of
edges intersected by S onto the symmetry plane, whereby
nodes on the symmetry plane are declared as optimization
nodes as illustrated in Fig. 3. This minor modification reg-
ularly happens in directions close to the tangential space
of the boundary of our domain ∂B and thus just slightly
changes the geometry of our body.

3.1.2 Rotational symmetry

An object is rotational symmetric if a rotation around a fixed
axis does not change the object’s shape. Therefore, the ver-
tices along a polygonal chain of edges on the lateral surface
are chosen as optimization nodes (see Fig. 4), whereas all
other nodes are declared as dependent nodes. For the design
update of the dependent nodes, we consider all design nodes
in cylindrical coordinates (r, h, ϕ) with respect to the rota-
tion axis a and an arbitrary plane normal to a, here defined

Fig. 4 Rotational symmetry line with choice of optimization nodes

using the point p. First, for each dependent node x
dep
j a

reference point yj on an edge between two optimization

nodes x
opt
i1

and x
opt
i2

is found with equal height and radius
(depicted in Fig. 4). Then, we determine two coordinates λi1

and λi2 in terms of the heights of the vertices x
opt
i1

and x
opt
i2

based on

h
(
x

dep
j

)
= λi1h

(
x

opt
i1

)
+λi2h

(
x

opt
i2

)
, with λi1 +λi2 = 1,

Obviously the angle ϕ of the design nodes does not influ-
ence the geometry of a rotational symmetric body. Thus,
using the previously computed coordinates, the height and
the radius of the dependent nodes are updated as

h
(
x

dep
j

)
= λi1h

(
x

opt
i1

)
+ λi2h

(
x

opt
i2

)

r
(
x

dep
j

)
= λi1r

(
x

opt
i1

)
+ λi2r

(
x

opt
i2

)
.

This update may be formulated in one function as

x
dep
j = p +

[
λi1h

(
x

opt
i1

)
+ λi2h

(
x

opt
i2

)] a

||a||2
+

[
λi1r

(
x

opt
i1

)
+ λi2r

(
x

opt
i2

)] vj

||vj ||2 ,

where

vj = x
dep
j −

[
λi1h(x

opt
i1

) + λi2h
(
x

opt
i2

)] a

||a||2 .

Note that for the choice of the set of optimization nodes it is
crucial to prevent a wriggled chain of edges around the rota-
tion axis. Therefore when picking the optimization nodes
we follow the below procedure:

1. Choose the design node with the lowest height as start
node: s0 = (r0, h0, ϕ0).

2. si → si+1:
Choose the following node si+1 = (ri+1, hi+1, ϕi+1)

such that

|ϕi+1 − ϕ0| ≤ |ϕj − ϕ0|, ∀j ∈ Ni

where

Ni = {j | xj is adjacent to xi , h(xj ) > h(xi )}.

3.1.3 Cyclic symmetry

An object is cyclic symmetric if a rotation around a fixed
axis by a multiple of a fixed angle does not change the
object’s shape. Thus we define a plane by its normal nwhich
also holds as circular axis intersecting the plane through the
center point c. We suppose that the initial geometry is cyclic
symmetric and divide the plane into [2π/γ ] ∈ N equally
sized circular sectors, where γ is the angle of the circu-
lar sector. Now, the design nodes in one sector are declared
as optimization nodes whereas all other nodes are depen-
dent nodes. For the coupling of the dependent nodes to
the optimization nodes, a reference point yj is determined
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by rotating each dependent node around the axis n by the
respective multiple s ∈ N of the sector angle γ into the sec-
tor containing the optimization nodes (illustrated in Fig. 5).
So with the design update of the optimization nodes the
dependent nodes can be updated by

x
dep
j = c + R−s (γ, n) · [yj − c],

where yj is expressed in terms of the vertices of the corre-
sponding surface element uniquely computed in the initial
design:

yj = λi1x
opt

1 + λi2x
opt

2 + λi3x
opt

3 ,

with the rotation matrix R(n, γ ) around the axis n by the
angle γ .

3.1.4 Additional step in the sensitivity analysis for implicit
constraints

The implicitly handled constraints in this chapter split the
set of design nodes into two new sets where one set is
declared as new design nodes and the other set is updated
according to the implicit constraint function F in terms of
the new design variables. This procedure introduces an addi-
tional dependency xdep

d (xopt
d ) which has to be considered

during the sensitivity analysis. More precisely, let

f ∗∗∗ (
xopt
d

)
= f ∗∗∗ (

xdep
d

(
xopt
d

)
, xopt

d

)
.

chain rule step: xdep
d

(
xopt
d

)

∂

∂xopt
d

f ∗∗∗ (
xopt
d

)
= ∂

∂xopt
d

f ∗∗∗ (
xdep
d

(
xopt
d

)
, xopt

d

)

= ∂f ∗∗

∂xdep
d

∂xdep
d

∂xopt
d

+ ∂f ∗∗

∂xopt
d

(14)=
[

∂F
∂xopt

d

]T
∂f ∗∗

∂xdep
d

+ ∂f ∗∗

∂xopt
d

,

Fig. 5 Sketch of a cyclic symmetric model with eight sectors and an
angle of 45◦

where

[
∂F

∂xopt
d

]T

is the transposed Jacobian of the function

F for the dependent nodes and ∂f ∗∗
∂xdep

d

,
∂f ∗∗
∂xopt

d

are computed

according to (13).

Note that multiple implicit constraints may be combined
where for each constraint the respective additional sensitiv-
ity analysis step has to be applied.

3.2 Explicit constraints

In cases, where the aforementioned approach cannot be
applied, we use the standard procedure and derive equal-
ity or inequality constraints restricting the set of admissible
domains to fulfill the constraint.

We exemplarily consider a demolding constraint, which
has to be fulfilled for parts which are produced in a cast-
ing process to ensures that the optimized geometry can be
pulled out of the casting mould after the liquid material
has been solidified. Therefore a demolding direction d is
defined as the direction in which the part is supposed to

Fig. 6 Cast part a with demolding direction and outwards pointing
normals and b in a casting mould
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Fig. 7 Three combinations of a cross product of element edges
leading to the same surface element normal

be pulled out of the mould. Moreover the outward normals
ni of a declared set of surface elements are computed.
Indentations are avoided by requiring that

�(ni , d) ≥ 90◦ i = 1, . . . , ndemold,

where ni are the outwards pointing normals to a subset of
ndemold surface elements (see Fig. 6). This can be formulated
as an inequality constraint:

gi := ni · d ≤ 0 i = 1, . . . , ndemold (15)

Hence this manufacturing constraint results in ndemold addi-
tional inequality constraints to be appended to the opti-
mization problem. The SNOPT we use in our numerical
examples is very robust in handling highly restricted prob-
lems which is why we add each additional inequality con-
straint separately to the optimization problem. We would
like to mention that one could also aggregate all demold-
ing constraints to just one inequality constraint using e.g.
the Kreisselmeier–Steinhauser function (Poon and Martins
2006).

For a sensitivity–based approach the first order gradi-
ent of each constraint function is required. In contrast to a
general derivation in a continuous setting, see for instance
Michailidis (2014), we directly rely on the discrete rep-
resentation of the design boundary. The outer normal is
computed using the cross product of the vectors spanning
the respective surface element, i.e.

n = ñ

||ñ||2 , where ñ = [xl − xm] × [xr − xm],

where xl , xr and xm are the vertices of the surface element,
see Fig. 7. On noting that any labeling of the vertices as

Fig. 8 a load case and b initial stress distribution of a rotational
symmetric part of a shaft

Fig. 9 a node declaration for the optimization problem and b opti-
mization result without rotational symmetry constraint

depicted in Fig. 7 results in the same vector ñ, it lasts to
compute the derivative with respect to the vertex xl without
loss of generality. Then the derivative of the scalar product
in (15) reads:

∂[n · d]
∂xl

=
3∑

i=1

di

∂ni

∂xl
,

with
∂ni

∂xl
=

[
∂ñi

∂xl
||ñ||2 − ñi

∂||ñ||2
∂xl

]

||ñ||−2
2 ,

∂||ñ||2
∂xl

= 1

||ñ||2
3∑

i=1

[

ñi

∂ñi

∂xl

]

and
∂ñi

∂xl
b

=
∂eijk

[
xl
j − xm

j

] [
xr
k − xm

k

]

∂xl
b

=eibk

[
xr
k − xm

k

]
,

where eijk is the Levi–Civita symbol.

4 Numerical examples

The introduced manufacturing constraints are illustrated
exemplarily for one implicitly and one explicitly handled
case. Both models are discretized using linear tetrahe-
dron elements. SNOPT is adjusted to terminate when the
decrease of the objective function for the design update with

Fig. 10 a optimization nodes and b optimization result with rotational
symmetry constraint
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Fig. 11 a convergence plots and b maximum constraint violation for the optimization of a shaft without and with rotational symmetry constraint
and c a summarizing chart

respect to the previous iteration is lower than a predefined
tolerance c

J (xi−1
d ) − J (xi

d ) < c = 10−4,

where i is the current iteration and

J = f

f 0
+ α

I
V 0

.

Here, the objective function f (i.e. the compliance, vol-
ume or von–Mises stress) is scaled by it’s initial value
such that the objective value for every optimization starts
at one whereas the fictitious energy I is zero for the initial
geometry.

4.1 Shaft

The first model is a rotational symmetric part of a shaft
with 35717 elements and 6837 nodes. The part is fixed on
the left side (marked by blue nodes) and loaded on its right
side by concentrated node forces of 1 kN (illustrated by
red arrows), see Fig. 8a. The material parameters are set to
E = 209000MPa and ν = 0.3. The von–Mises stress distri-
bution is illustrated in Fig. 8b. The objective is to minimize
the volume where the maximum stress must not increase.
Hence the optimization problem can be formulated as

min
V

V 0
+ α

I
V 0

subject to max[σvM ] − max[σ 0
vM ] ≤ 0

Fig. 12 Symmetry boundary conditions

where max[σ 0
vM ] is the maximum von–Mises stress in the

initial design B̄0. The maximum in the constraint is approxi-
mated using the volume–averaged p–mean of the von–Mises
stresses over all Gauss points. In case of linear shape func-
tions and one Gauss point for each element, the p–mean
norm is given by

P(σvM, p) =

⎡

⎢
⎢
⎢
⎣

1
ne∑

e=1

∫

Be

dV

ne∑

e=1

∫

Be

[σe
vM ]pdV

⎤

⎥
⎥
⎥
⎦

1
p

≈ max
e=1,...,ne

[σe
vM ], (16)

where p ∈ {n ∈ N | n/2 ∈ N} is a control parameter
for the accuracy of the approximation and σe

vM the von–
Mises stress evaluated at the Gauss point in element e. The
node declaration for the optimization problem is visualized
in Fig. 9a. Design nodes are marked in green. Yellow nodes
are fixed in x– and z–direction and red nodes are fixed in
y–direction. All remaining node coordinates are controlled.
The optimization without rotational symmetry as a manu-
facturing constraint satisfies the stopping criterion after 19
iterations with the shape depicted in Fig. 9b. The volume has
been reduced by 11.8 % but the optimized shape is not rota-
tional symmetric anymore. The same optimization problem
including the rotational symmetry constraint results in the

Fig. 13 a Dirichlet boundary conditions for the load case at the top
side of the pin bore and b top and side pressure
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Fig. 14 boundary conditions for the optimization problem: a fixed
nodes and b design nodes

optimized design illustrated in Fig. 10b. Thereby the design
nodes have been reduced from 743 to 19 optimization nodes,
marked in red in Fig. 10a. The procedure still takes 19 itera-
tions to terminate. In this case, the volume has been reduced
by 5.8 % and the new shape is still rotational symmetric. In
Fig. 11a and b the convergence plots for both optimizations
are shown, where the dashed lines in (a) illustrate the scaled
volume V

V 0 and the solid lines include the penalizing ficti-

tious energy V

V 0 + α I
V 0 . For the constraints a tolerance of

10−6 is adjusted to be in the feasible domain. The behav-
ior of the volume–averaged p–mean value is displayed in
Fig. 11b. A summarizing chart is depicted in Fig. 11c.

4.2 Piston

The next example is a quarter model of a piston with 33700
elements and 8657 nodes. The model and the load case are
provided by courtesy of our project partner Federal–Mogul
Nürnberg GmbH.

The nodes in Fig. 12 indicate symmetry boundary condi-
tions for the quarter model, i.e. the yellow nodes in Fig. 12a
are fixed in x–direction and the yellow nodes in Fig. 12b are
fixed in y–direction. The presented load case is depicted in
Fig. 13. The pressure of 110 MPa on the piston head up to
the annular groove originates from the ignition in the com-
bustion chamber. Due to the skew position of the piston rod
and the resulting contact of the piston to the cylinder wall,

Fig. 16 visualization of the demolding constraint on the design space
of the piston quarter model a without and b with molding constraint

a second loading acts on the piston skirt which has been
approximated through a static FE–analysis (see Fig. 13b).
Moreover, as illustrated in Fig. 13a, the nodes on the top side
of the piston bore are fixed in x– and z–direction due to the
contact to the piston rod for the force transmission. Young’s
modulus and Poisson’s ratio are set to E = 209000 MPa
and ν = 0.3.

For the optimization problem, the crown, the side and
the bore of the piston are completely fixed (see Fig. 14a).
Nodes on the symmetry planes are fixed in normal direc-
tion to the plane but may be updated by the mesh movement
algorithm within the plane. The nodes on the bottom of the
piston are declared as design nodes as illustrated in Fig. 14b.
The objective for this optimization problem is to minimize
the maximum von–Mises stress, which we approximate by
the volume–averaged p–mean of the von–Mises stresses
over all Gauss points (16). Furthermore we apply a volume
constraint such that the problem reads

min
P(σvM, p)

P (σ 0
vM, p)

+ α
I
V 0

subject to V − V 0 ≤ 0

where V 0 is the volume in the initial configuration. The
maximum von–Mises stress distribution of the initial geom-
etry is displayed in Fig. 15a. After 51 iterations, the maxi-
mum von–Mises stress was reduced by 8.9 %. As visible in

Fig. 15 Optimization results for the quarter model of a piston: stress distribution in the a initial design, b optimized without demolding constraints
and c optimized with demolding constraints
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Fig. 17 a convergence plot and b summarizing table for the quarter
model of a piston

Fig. 18 Constraint violation for the quarter model of a piston a
without and b with demolding constraints

Fig. 15b an indentation occurs which will cause problems
for the production process. The piston is manufactured by a
casting process and therefore needs to be pulled out of the
casting mould in z–direction which is not possible any more
for the optimized design. Hence we incorporate a demold-
ing constraint for each surface element in the design area
and therefore append 3019 additional inequality constraints.

The maximum von–Mises stress has been reduced by
7.1 % in 49 iterations and the final shape is illustrated
in Fig. 15c. In Fig. 16 the molding constraint is visual-
ized for the optimization result (a) without and (b) with
demolding constraint. The convergence plots for both opti-
mizations as well as the behavior of the maximum constraint
throughout the iterations for the demolding constraint can
be observed in Figs. 17a and 18. The dashed and solid lines
in Fig. 17a show the scaled maximum von–Mises stress
P(σvM,p)

P (σ 0
vM,p)

and the penalized objective function P(σvM,p)

P (σ 0
vM,p)

+α I
V 0 respectively, where the maximum is approximated by

the volume–averaged p–mean function (16). A summarizing
table is shown in (17) (b).

5 Conclusion

We introduced a novel approach to handle manufacturing
constraints in node–based shape optimization, in which the
design node–coordinates are split into optimization nodes
and dependent nodes. The optimization nodes are declared
as new design variables and the dependent nodes are related
to the new design variables such that the manufacturing
requirement is fulfilled. The advantages of this method are
that no additional equations have to be considered in the
optimization problem and the number of design variables is
reduced. This new method can be combined with explicit or
further implicit constraints.
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